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Abstract. Since the end of 2019, COVID-19 has threatened human life around the globe. As4
the death toll continues to rise, development of vaccines and antiviral treatments have progressed at5
unprecedented speeds. This paper uses an SIR-type model, extended to include asymptomatic carrier6
and deceased populations as a basis for expansion to the effects of a time-dependent drug or vaccine.7
In our model, a drug is administered to symptomatically infected individuals, decreasing recovery8
time and death rate. Alternatively, a vaccine is administered to susceptible individuals and, if9
effective, will move them into the recovered population. We observe final mortality outcomes of these10
countermeasures by running simulations across different release times with differing effectivenesses.11

As expected, the earlier the drug or vaccine is released into the population, the smaller the12
death toll. We find that for earlier release dates, difference in the quality of either treatment has a13
large effect on total deaths. However as their release is delayed, these differences become smaller.14
Finally, we find that a vaccine is much more effective than a drug when released early in an epidemic.15
However, when released after the peak of infections, a drug is marginally more effective in total lives16
saved.17
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1. Introduction. The world faces an unknown future due to SARS-CoV-2. In19

the U.S., discussion surrounds re-opening, social distancing measures, and a second20

wave. Researchers have made strides in the development of drugs and vaccines at21

unprecedented speeds, but the virus continues to spread with U.S. infections and22

deaths increasing every day [4]. Figure 1 shows the total number of deaths and cases23

in the US since the start of 2020.24

Fig. 1. Total U.S. COVID-19 Cases (Left), and Deaths (Right)[19]

One of the United States’ major responses to the pandemic has been Operation25

Warp Speed (OWS). The partnership between the CDC, FDA, NIH, DoD and others26

∗Submitted to the editors September 26, 2020.
Funding: This paper is the follow-up to a submission for a contest held by Emory University’s 

Department of Mathematics in April 2020. The authors were awarded first place prize in the contest.
†Department of Mathematics, Emory University. Undergraduate Majors in Applied Math. Megan 

Johnston (Sr.) megan.irene.johnston@emory.edu, Laird Stewart (Jr.) laird.stewart@emory.edu, 
David Zhang (Jr.) david.zhang@emory.edu, and Jesse Sun (So.) jesse.sun@emory.edu.

Faculty Sponsor: Alessandro Veneziani, Emory Department of Mathematics and Computer Sci-

ence. avenez2@emory.edu

This manuscript is for review purposes only.

Copyright © SIAM
  Unauthorized reproduction of this article is prohibited

214



M. JOHNSTON, L. STEWART, J. SUN, D. ZHANG

has committed to providing 300 million doses of a vaccine by the end of January 2021.27

OWS has provided more than $2 billion in funding for vaccines to Johnson & Johnson,28

Moderna, and AstraZeneca/Oxford [2]. As of September 26th, each of these trials are29

in phase 3 [7].30

While OWS has not funded antiviral development, companies around the world31

are also racing to develop antivirals. Antivirals from Gilead Sciences (Remdesivir),32

AstraZeneca, and Merck & Co. are currently authorized, in phase 1, and in phase 2,33

respectively [7]. These treatments’ mechanisms and deliveries vary but have all shown34

promise.35

Because vaccines and drugs function in different ways and are administered to36

different populations, their effects on the pandemic will not be the same. Outcomes37

will also depend on the pharmacological effectivenesses of the countermeasures as well38

as the speed and date of their introduction.39

In this work, we consider a basic mathematical model extended to provide insight40

into these outcomes. The model takes into account the time-dependent distribution41

of a drug or vaccine and respective patient outcomes (e.g. the rate of recovery or42

death). It can be expanded to fit any population or disease variable, but has been fit43

to those of the U.S. for the sake of this work.44

Our model is based on a standard set of SIR equations for susceptible, infected and45

recovered populations. An SIR model is a system of ordinary differential equations46

which describes how an outbreak spreads through a population [18]. It is comprised47

of the following three equations:48

dS

dt
= −βI

(
S

N

)
(1.1)49

dI

dt
= βI

(
S

N

)
− γI(1.2)50

dR

dt
= γI(1.3)51

52

S, I, and R are the number of susceptible, infected, and recovered people at time t,53

respectively. The problem is completed by appropriate initial conditions S0, I0, and54

R0. At any time the size of the population, N , is defined as the following:55

N = S + I +R

In this system, β is the expected number of people an infected person infects per day.56

It is closely related to the so-called R0 or ‘R naught’ which is the total number of57

people that one infected person will infect over the duration of their illness. Therefore,58

β is R0/L where L is the duration of the illness. The rate at which the infected group59

recovers is γ. Gamma can also be expressed as 1/L because, for example, if it takes 560

days to recover then γ = 0.2 as one in five infected individuals will recover each day61

[11].62

While this basic model is indicative of important dynamics, it is too crude for our63

problems because it does not consider asymptomatic or deceased individuals who are64

important in the context of COVID-19. For this reason, we introduce an expanded65

SIR model as a Basis Model for further analysis.66

The paper is organized as follows: Our Basis Model is in section 2, our model67

including a drug is in section 3, our model including a vaccine is in section 4, our final68

results are in section 5, and a discussion follows in section 6.69
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2. COVID-19 Basis Model.70

2.1. Equations. Using the SIR model as a starting point, its equations are71

expanded to include asymptomatic carrier (A) and deceased (D) populations [11].72

These will be critical when expanding the model for a drug and vaccine release. The73

total population therefore becomes the following:74

N = S +A+ I +R+D

The flow chart representing the different compartments of our model and their75

interactions is shown in Figure 2:76

Fig. 2. Compartmental Flow Chart for Base SAIRD Model

With the inclusion of an asymptomatic carrier population, there are two groups77

with different risks of infecting others. Therefore, β is split into βi and βa for the78

symptomatically infected and asymptomatic carrier populations, respectively. There-79

fore change in the susceptible population becomes the following:80

(2.1)
dS

dt
= −

[
βiI

(
S

N

)
+ βaA

(
S

N

)]
81

Susceptible individuals will become asymptomatic carriers (A) before becoming82

symptomatically infected (I) so the positive rate of change for the asymptomatic pop-83

ulation, dA
dt , will be the opposite of the rate of change of the susceptible population.84

Asymptomatic individuals will either develop symptoms or recover without showing85

symptoms. Let µ be the proportion of asymptomatic individuals who become symp-86

tomatically infected. Therefore, the total change in the asymptomatic population can87

be defined as the following:88

(2.2)
dA

dt
=

[
βiI

(
S

N

)
+ βaA

(
S

N

)]
− µAni − (1− µ)Anr89

where ni is the rate at which people transition from asymptomatic carriers to symp-90

tomatically infected in one day. In other words, 1/(days to transition to symptomati-91

cally infected from asymptomatic). Further, nr is the rate at which people transition92

from asymptomatic to recovered. In other words 1/(days to transition to recovered93

from asymptomatic). Notice that if ni = nr = n, the negative rate of change would94

simply become −An.95

Increases in the symptomatically infected population (I) will result from asymp-96

tomatic individuals who begin to show symptoms. Once symptomatic, individuals97
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will either join the recovered or deceased populations. Let α represent the proportion98

of individuals who die from the virus. Moreover, let ρ be the rate at which people99

die, or 1/(days it takes to die if symptomatically infected). Also, let γ be the rate at100

which people recover, or 1/(days it takes to recover from symptomatically infected).101

The change in symptomatically infected individuals, I, is therefore the following [11]:102

(2.3)
dI

dt
= µAni − αρI − (1− α)γI103

The change in the recovered population can be described using the components104

of the asymptomatic carrier and symptomatically infected populations who recover:105

(2.4)
dR

dt
= (1− µ)Anr + (1− α)γI106

Similarly, the change in the deceased population can be described using the com-107

ponents of the symptomatically infected population who die:108

(2.5)
dD

dt
= αρI109

In summary, the model can be written in matrix form where u = [S,A, I,R,D]T110

and summarized as the vector d(u)
dt

, where each entry corresponds to each of the five111

equations:112

(2.6)
d(u)

dt
= B(u)u113

(2.7) B(u) =


0 −βaS

N −βiS
N 0 0

0 βaS
N − µni − (1− µ)nr

βiS
N 0 0

0 µni −αρ− (1− α)γ 0 0
0 (1− µ)nr (1− α)γ 0 0
0 0 αρ 0 0

114

The matrix format allows for analysis of the model in its equilibrium state to under-115

stand the potential of achieving a state where there is no change in the populations116

from the vaccine or drug. The full system of equations is summarized in Appendix A.117

2.2. Tuning Parameters. Values from current reports on SARS-CoV-2 provide118

potential values for our parameters. However, due to the novelty of SARS-CoV-2, it119

is important to note that these values are epidemiological estimates and continue to120

change.121

The proportion of symptomatically infected patients that will show symptoms, µ,122

varies widely among sources. In this paper it is taken as 0.85, a rough estimate given123

a few studies [8, 9]. In practice, changes in the value of µ within the range given by124

Buitrago-Garcia’s meta-analysis of studies ([8]: 0.45-0.97), affect the final case and125

death counts but do not affect the shape of the curves or overall system dynamics.126

Therefore our analysis is not affected by the exact value of µ.127

The length of time before symptoms present themselves is approximately 5.1 days128

[13], so ni can be estimated at 1
5.1 = 0.1961. Likewise, the number of days to transition129

to recovered from asymptomatic is estimated to be 9 days, therefore nr is 1
9 = 0.1111130

[17]. Next, the proportion of individuals who die from the virus, α, is estimated at131
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0.64% with the length of time it takes to die estimated at 17.8 days [15, 20]. Therefore,132

ρ is estimated to be 1
17.8 = 0.0562. Finally, the length of time it takes to recover is133

estimated to be between 10 - 13 days [3], so γ becomes 1
11.5 = 0.0870.134

The number of people infected by asymptomatic and symptomatically infected135

people per day are βa and βi respectively. To calculate these parameters, we take136

the total number of people an asymptomatic or symptomatically infected individual137

infects (R0) and divide by the duration of their illness. However, data about differ-138

ent rates of infectivity between asymptomatic carriers and symptomatically infected139

people is not widely published or agreed upon. Because of this, we use a single β for140

both the asymptomatic and symptomatically infected populations. It is calculated as141
R0

duration .142

The quantity R0 is the total expected number of people that one individual will143

infect over the course of the disease. Note that this is the ‘base rate’ infectivity of the144

virus and does not account for social distancing, masks, or other health precautions.145

The estimated value of R0 is widely disputed. However, the World Health Organiza-146

tion suggests that the value lies between 1.4 and 2.5, so we will approximate it as 2147

[6]. Next we divide R0 by a constant duration of infection. However, depending on148

whether or not an individual is symptomatic, this duration will change. As a heuris-149

tic, we approximate the duration of the disease as 1/ni + 1/γ because the majority150

of people will show symptoms and the vast majority of those will not die. Therefore,151

β = R0/(1/ni + 1/γ). This gives us 2/(5.1 + 11.5) = 0.1205.152

Finally, for the initial conditions of the model, the remainder of this paper will use153

I0 = 1000 and S0 = N − 1000 with the remaining initial populations set to zero. The154

total population, N , is that of the U.S.: 3.28196e8. These initial conditions assume155

that everyone in the population is susceptible to the virus. Small variations in the156

number of initially infected, I0, around zero do not change dynamics of the system or157

our results, but determine how quickly the peak of infections occur.158

Our estimates for these parameters can be summarized in Appendix D.159

2.3. Equilibrium. We investigate the equilibrium and stability of our system of160

equations for a better assessment of our model. At the equilibrium in our model, each161

of the five differential equations equals zero under the assumption that the total pop-162

ulation does not change. Therefore, the equilibrium is some u∗ where B(u∗)u∗ = 0.163

In our model, ni, nr, ρ, γ, βa, and βi are greater than zero. Further, µ and α are164

greater than zero and less than one. Given these constraints, I∗ must equal zero to165

satisfy the equilibrium for equation (2.5). With this conclusion, A∗ must also equal166

zero to satisfy the equilibrium for equation (2.3). By setting I∗ and A∗ equal to zero,167

all of the differential equations satisfy equilibrium. This is also visually apparent in168

matrix (2.7). Therefore, the number of symptomatically infected and asymptomatic169

individuals must equal zero for there to be no further change in the populations. S∗,170

R∗, and D∗ can be any constants such that S∗ + R∗ + D∗ = N . In summary, the171

equilibrium point u∗ can be written as [S∗, 0, 0, R∗, D∗]T where S∗, R∗ and D∗ are172

constants.173

Using the estimated values for the constants, the eigenvalues can be solved for174

using a Jacobian Matrix (Appendix E). Three eigenvalues equal zero, one eigenvalue is175

negative, and the final eigenvalue is positive when S0

N > 0.52. When this condition is176

satisfied, the equilibrium is not asymptotically stable but rather a saddle point. When177

S0 represents less than 52% of the total population, the fifth eigenvalue is negative178

and the equilibrium is asymptotically stable. When this is true, the initial conditions179

are already stable. This demonstrates that, if the population was 52% immune when180
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COVID-19 began its spread, herd immunity would have already been achieved and181

the pandemic would not have occurred.182

Fig. 3. Base SAIRD Trajectory

2.4. Results. As we would expect from an SIR-type model, the susceptible and183

recovered populations follow logistic curves as shown in Figure 3. The asymptomatic184

and symptomatically infectious curves peak and return to zero. The death curve is185

also logistic with an asymptotic value of 956,155. The susceptible and recovered curves186

have inflection points close to the peak of the symptomatically infected curve. This is187

what we would expect, because after the number of infections peaks, the growth of the188

recovered population will slow. Conversely, the susceptible curve also flattens because189

less people are being infected. These inflection points and peaks will be critical to the190

results of a drug or vaccine.191

3. Inclusion of a Drug.192

3.1. Modeling the Drug. The inclusion of a drug only changes the model’s193

parameters, not the overall structure of the equations. Once a drug is available, more194

of the symptomatically infected population will recover and less will die. This is195

shown in Figure 4. Recovery of the infected also becomes faster. Therefore dS
dt and196

dA
dt remain the same from the Basis Model.197

Fig. 4. Compartmental Flow Chart With Inclusion of Drug

The introduction of a drug will help some in the symptomatically infected pop-198

ulation recover, but not all individuals will receive the drug. Therefore, the dI
dt is199
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partitioned by j, the percentage of individuals who receive the drug. The change in200

symptomatically infected individuals, I, becomes the following:201

(3.1)
dI

dt
= µAni −

no drug, deceased︷ ︸︸ ︷
(1− j)αρI − (1− j)(1− α)γI︸ ︷︷ ︸

no drug, recover

−
drug, deceased︷ ︸︸ ︷
jαjρI − j(1− αj)γjI︸ ︷︷ ︸

drug, recover

202

where αj is the proportion of individuals who die despite receiving the drug. Likewise,203

γj is the rate at which the population treated with the drug recovers. It is assumed204

that the time it takes to die does not depend on receiving the drug so ρ does not205

change. With these new additions, the change in the recovered population becomes206

the following:207

(3.2)
dR

dt
= (1− µ)Anr + (1− j)(1− α)γI + j(1− αj)γjI208

The change in the deceased population becomes the following:209

(3.3)
dD

dt
= (1− j)αρI + jαjρI210

Overall, the equations (2.1), (2.2) and (3.1)-(3.3) describe the population change211

with the introduction of a drug (Appendix B).212

3.2. Tuning Parameters. Because antiviral drug trials are still underway, data213

about their effectiveness is not available. Both influenza and COVID-19 are respira-214

tory viruses and share many symptoms and complications. Therefore, as a heuristic,215

we will begin by using data from influenza antivirals as baseline constants. We only216

use these data as baselines and run our model with different values through a sensi-217

tivity analysis.218

The parameters βa, βi, µ, ni, nr, α, γ and ρ remain the same from the Basis219

Model. The proportion of individuals who receive the drug and die, αj , is estimated220

at half of α based on the effectivenesses of other antiviral drugs [12]. Therefore, αj is221

0.32%.222

Influenza antivirals can help sick people recover, on average, in 6.8 days [14]. This223

is a 14.7% reduction in the diseases’ duration. We use this fraction along with the224

previous duration of 11.5 days to estimate γj as 1
11.5×(1−0.147) = 1

9.810 = 0.102.225

These parameters can be summarized in Appendix D.226

3.3. Drug Availability. For the availability of the drug, we use a logistic curve227

to model the percentage of patients who are treated with the drug at time t:228

(3.4) j(t) =
1

1 + ea(−t+b)
229

Logistic growth is reasonable because manufacturing will ramp up exponentially230

at the beginning of production, while towards the end of its distribution, difficult231

access to rural communities or those with poor access to healthcare will slow growth.232

In Figure 5, a = 0.1 is the logistic growth rate of the curve and b = 200 (arbitrary)233

is the inflection point. For the purpose of this model, a = 0.1 has been chosen so that234

the majority of the change in drug distribution occurs over a span of 30 days. Here235

j(215)− j(185) ≈ 0.635. We feel this is a reasonable time span based on the COVID-236

19 response. In practice, small changes in the value of a do not change our final237
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Fig. 5. Drug Distribution j(t)

analysis or conclusion. This is the case as long as the distribution takes place within238

the duration of the outbreak itself (i.e. ∼200 days [see Figure 3] which corresponds239

to roughly a ≥ 0.04). In the remainder of the paper when the term ‘release date’ of240

the drug or vaccine is used, we are referring to the inflection point of the curve.241

3.4. Equilibrium. While equilibrium is typically related to autonomous sys-242

tems, the time dependence of particular parameters is alleviated because it is as-243

sumed these variables become constants as time approaches infinity. As before, ni,244

nr, ρ, γ, γj , βa and βi are greater than zero. Also, µ, α, and αj are greater than245

zero and less than one. Furthermore, j(t) is a logistic curve bounded by 0 and 1 .246

Based on these constraints, the model follows the same structure as the Basis Model.247

Thus, I∗ = A∗ = 0 at equilibrium. S∗, R∗, and D∗ can be any constants such that248

S∗ + R∗ + D∗ = N . In summary, similar to the Basis Model, the equilibrium point249

u∗ = [S∗, 0, 0, R∗, D∗]T .250

To understand the stability, j(t) is set to its asymptotic value of 1 since it is251

assumed the drug would be fully distributed by the equilibrium where there are no252

symptomatically infected individuals. In solving for the eigenvalues, three are found253

to equal zero. One eigenvalue is negative. The final eigenvalue is positive when254
S0

N > 0.48. Therefore, the outbreak would have been prevented if S0 represented255

less than 48% of the total population, given that the drug was already fully available256

(j(t) = 1). Overall, the drug does not change the nature of the equilibrium, merely257

the values.258

3.5. Parameter Sensitivity Analysis. This section investigates how varying259

γj (the rate at which people recover with drug) and αj (the proportion of people who260

receive the drug and die) impacts the final death toll (i.e. lim
t→∞

D(t)). Figures 6 and261

7 plot the release date of the drug against the final death toll. Each graph varies γj262

and αj while the other remains constant at αj = α or γj = γ. The horizontal line at263

the top of each figure remains constant because neither γ nor α have changed, so the264

drug has no effect. In both figures, each curve converges to the same final death toll265

because the drug has no effect if it is released after the pandemic has passed. In both266

figures, the inflection point of each curve aligns with the peak of infections.267

In Figure 6, as we expect, the earlier that the drug is released, the lower the death268

toll where each curve is roughly sigmoidal. For early release dates, the more effective269

(i.e. faster recovery time) drugs save many more lives than the less effective drugs.270
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Fig. 6. Final Death Toll vs. Release Date, Varying γj

Fig. 7. Final Death Toll vs. Release Date, Varying αj

However, as the release date nears the peak of infections, this difference in outcome271

shrinks. Finally, it is not clear why the γj = 1/5 curve “tapers off” as t→ 0−.272

In Figure 7, if the drug is released on day 1, any change in αj is met with a273

proportional change in the final deaths (see αj = 0.005, 0.003, 0.001). Again, we see274

sigmoidal curves where earlier release dates save more lives.275

Our model suggests that while substantial benefit can still be derived from releas-276

ing a drug after the peak of infections, the death toll will be reduced dramatically if277

the drug is released far before the peak. However, a ‘good’ drug can save more lives if278

released after the peak than a comparatively ‘bad’ drug available from the beginning.279

4. Inclusion of a Vaccine.280

4.1. Modeling the Vaccine. Now we explore the inclusion of a vaccine on the281

system of equations. We will not simultaneously model the distribution of a drug282

and vaccine, but do compare the two in section 5. Therefore we will come back to283
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our original Basis Model (section 2) as a starting point. There are a handful of ways284

to incorporate vaccinations into an SIR type model. One strategy alters the initial285

recovered population (R0) to represent those originally “vaccinated” [21]. Another286

vaccinates a fraction of newborns as they are introduced into the population [22].287

Finally, one could subtract individuals from the susceptible population and move them288

into the recovered category. This negative rate of change could be in proportion to the289

size of the susceptible population or independent of it. For this model we remove v(t)290

individuals from the susceptible population each day. We define v(t) as the number291

of vaccinations distributed on a given day, independent of the size of the susceptible292

population. This approach is best for our modeling purposes because we can control293

exactly when, how quickly, and how many vaccinations are distributed. This would be294

less intuitive with a vaccination rate proportional to the susceptible population. The295

major assumption underlying this modeling decision is that successfully vaccinated296

individuals will become immediately and totally immune to the virus.297

That being said, vaccinations are not always successful. If one was unsuccessful,298

the recipient would not know and would not become vaccinated again [16]. Therefore,299

the susceptible population is split into two different groups: The original susceptible300

population (S), and the population of who received an ineffective vaccination (Siv).301

For the overall dynamics of the model, this means that in addition to susceptible302

individuals moving into the asymptotically infected category (A), they could also303

move directly into Siv or R. Finally, members of the Siv population can only move to304

A, analogous to the susceptible population of section 2. Figure 8 shows the dynamics305

of this new system and the constant total number of individuals (N) becomes the306

following:307

N = S + Siv +A+ I +R+D

Fig. 8. Compartmental Flow Chart With Inclusion of Vaccine

One issue in removing v(t) individuals each day surfaces as S nears zero. A naive308

equation including v(t) would look something like equation (2.1) minus v(t): dS
dt =309

−
[
βiI
(
S
N

)
+ βaA

(
S
N

)]
−v. Notice that because v is a constant and not proportional310

to S there is nothing stopping S from becoming negative. Dealing with this boundary311

is important to ensure N remains constant and people who never existed are not312

“vaccinated” and added to Siv or R . To address this issue, we alter our equations313

when S nears zero using a Heaviside step function (4.1). In discrete terms, for the314

sake of example, it is clear S is nearing zero when |dSdt | > S because this suggests315

during the next day S will become negative (remember dS
dt is strictly negative and S316
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is positive). Therefore we choose to split our equations at this point.1317

Before we continue, note that |dSdt | = βiI
(
S
N

)
+ βaA

(
S
N

)
+ v > S can be re-318

arranged to become v > S −
[
βiI
(
S
N

)
+ βaA

(
S
N

)]
, i.e. when the number of vacci-319

nations becomes larger than S minus those transitioning into A. In the beginning,320

when v is less than this value, we use the “naive” implementation described above.321

After this point we set dS
dt = −S, vaccinating the remaining population of S with ex-322

ponential decay, ensuring it never becomes negative. Given all of this, the Heaviside323

function becomes the following:2324

(4.1) H =

{
1 if v ≤ S −

[
βiI
(
S
N

)
+ βaA

(
S
N

)]
0 otherwise

325

With the inclusion of this function, H, the change in the population of susceptible326

individuals is modeled by the following:327

(4.2)
dS

dt
= −

[
βiI

(
S

N

)
+ βaA

(
S

N

)]
H − (v − S)H − S328

Notice that when H = 1, the equation becomes dS
dt = −

[
βiI
(
S
N

)
+ βaA

(
S
N

)]
− v329

(equation (2.1) minus v). When H = 0, the equation becomes dS
dt = −S.330

As vaccinated individuals are removed from S, they move either to Siv or A based331

on κ, the vaccine’s effectiveness. The change in the new compartment, susceptible332

but ineffectively vaccinated is modeled by the following:333

(4.3)
dSiv
dt

= [(1− κ)v − (1− κ)S]H + (1− κ)S −
[
βiI

(
Siv
N

)
+ βaA

(
Siv
N

)]
334

where (1−κ) is the percentage of ineffective vaccinations. The two positive terms (new335

ineffective vaccinations) are (1−κ)v and (1−κ)S for H = 1 and H = 0, respectively.336

Regardless of H, the negative term, −[βiI(Siv

N )+βaA(Siv

N )], remains the same. Again337

this is the same as equation (2.1).338

The change in the asymptomatic population now includes a positive term for339

ineffectively vaccinated individuals who become infected. The first term disappears340

when H = 0 because the entire susceptible population is vaccinated and no one new341

becomes infected.342

(4.4)
dA

dt
=

[
βiI

(
S

N

)
+ βaA

(
S

N

)]
H+

[
βiI

(
Siv
N

)
+ βaA

(
Siv
N

)]
−µAni− (1−µ)Anr343

The symptomatically infected population equation, dIdt , remains the same as that344

of the Basis Model equation (2.3). The change in the recovered population is very345

similar to equation (2.4) from the Basis Model, with the addition of those who receive346

1Attempts were made to mark this break point at S = 0 and then set dS
dt

= 0, but the resulting
kink leads to issues with numerical integration.

2Despite the amount of thought put into the boundary at S = 0, its overall impact on the
model is next to none as it is only deals with the last tiny percentage of the susceptible population.
Therefore, S’s decay after the Heaviside function flips (e.g. linear, exponential or instantaneous) has
no discernible effect on the outcome of the simulation. That being said, its implementation does
matter when considering kinks or discontinuity and therefore issues with numerical integration. The
choice of exponential decay avoids these issues.
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a successful vaccination. This will either be κv or κS depending on the Heaviside347

function:348

(4.5)
dR

dt
= (1− µ)Anr + (1− α)γI + (κv − κS)H + κS349

We assume that a vaccination does not affect the rate at which people die, so dD
dt350

remains the same as that of the Basis Model equation (2.5). Overall, the equations351

(2.3), (2.5) and (4.2) - (4.5) (Appendix C) describe the population change with the352

introduction of a vaccine.353

4.2. Tuning Parameters. For the sake of this model, we assume that the354

SARS-CoV-2 vaccine will consist of a single dose and will grant lasting immunity (i.e.355

the virus will not mutate significantly). Therefore, κ, the effectiveness of the vaccine356

is estimated by averaging the effectiveness of viral vaccines with lasting immunity.357

We estimate the vaccine to be 91% effective averaging eight known effectivenesses of358

common viral vaccines [16]. Again, βa, βi, µ, ni, nr, α, γ and ρ are all estimated359

using the values from the Basis Model. A summary of the value of these parameters360

is presented in Appendix D.361

4.3. Vaccine Availability. For the release of the vaccine, a logistic distribution362

is used to model the number of new vaccinations available to be administered to363

susceptible individuals at time t:364

(4.6) v(t) = q
aea(−t+b)

(1 + ea(−t+b))
2365

Here, q is the total number of vaccines distributed, a is the logistic growth rate,366

and b is the date of maximum vaccine distribution growth.367

Fig. 9. Total/Daily Vaccine Distribution

Figure 9, shows the total (solid) and daily (dashed) number of vaccines dis-368

tributed. The dashed curve, v(t), is the derivative of the solid curve. Note that369

for the sake of this figure, the final number of vaccines distributed is set at the U.S.370

population size. However the following simulations are stratified for different percent-371

ages of total population vaccinated. Again, like the drug, a = 0.1 has been chosen so372

that the majority of the vaccinations are distributed in a month-long span. As with373

the drug, from testing, the exact value of a has little effect on our analysis.374
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4.4. Equilibrium. As t continues to infinity, v(t) approaches zero. Therefore,375

the system loses its time-dependence. In this model, ni, nr, ρ, γ, βa, and βi are greater376

than zero. Similar to before, µ, α, and κ are also greater than zero and less than one.377

Given these constraints, I∗ must be zero so that dD
dt is in equilibrium (equation (2.5)).378

Furthermore, A∗ must also be zero so that dI
dt is in equilibrium (equation (2.3)). With379

I∗ and A∗ set to zero, dA
dt = dI

dt = dD
dt = 0. To satisfy dR

dt = 0 (equation (4.5)),380

v(t) or S∗ must be zero, based on the Heaviside equation. If the Heaviside is always381

equal to 1, then, as noted, v(t) approaches zero as t approaches infinity. We focus on382

the second case, when the Heaviside equals 0 and thus where S∗ is zero. After the383

Heaviside function flips, S∗ decays exponentially to zero. Therefore, an equilibrium384

point is achieved when A∗ and I∗ are zero and the Heaviside function has flipped, i.e.385

v > S. S∗iv, R
∗, and D∗ can be any constants such that S∗iv +R∗ +D∗ = N . Overall,386

an equilibrium point, û∗, is achieved at [0, S∗iv, 0, 0, R
∗, D∗]T .387

Based on the estimated values for the constants, the first four of the the eigen-388

values are -1, 0, 0, and 0. The fifth eigenvalue is negative. The sixth eigenvalue is389

positive when
S(iv)0

N > 0.52. Similar to the Basis and Drug models, when S(iv)0390

represents less than 52% of the total population, the sixth eigenvalue is negative and391

the initial conditions are stable.392

Fig. 10. Final Death Toll vs. Vaccine Release Date, Varying Population Vaccination Percentage

4.5. Parameter Sensitivity Analysis. Just as subsection 3.5 analyzed the393

effect of the drug’s release date on death toll, this section analyzes that of the vac-394

cine. Figure 10 is stratified for q, or the total number of vaccinations available for395

distribution, whereas Figure 11 is stratified for κ, or the perfect effectiveness of the396

vaccine. In Figure 10, κ is held constant at our estimated value of 0.91 and in Figure397

11, q is held constant at N (i.e. the total population). Remember that we refer to398

the inflection point of the distribution of vaccines as their ‘release date’. Therefore399

each curve begins slightly after day zero so that for the earliest release date all of the400

vaccinations are still distributed.401

In Figure 10 each curve has a positive slope and is roughly sigmoidal. However,402

near time 0, the curves tend to bend downward and to the left (see κ = 0.375). This403

is likely because, for early release dates, a majority of vaccinations are administered404

before infections start to ramp up. Therefore the population can reach herd immunity405
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before the virus has a chance to spread exponentially.406

Fig. 11. Final Death Toll vs. Vaccine Release Date, Varying Vaccine Effectiveness

Figure 11 shows how vaccine effectiveness, κ, impacts the death toll. The figure407

is similar to Figure 10 because q = N and vaccinating the entire population with408

a 50% effective vaccine is essentially the same as vaccinating 50% of the population409

with a 100% effective vaccine. However, in Figure 10, κ = 91% not 100% so the410

figures are similar but are not identical. For both figures, it is important to note how411

the difference in outcome shrinks as the release date is delayed. For instance, the412

difference in outcome between the 25% and 50% effective vaccinations shrinks from413

5e5 deaths from the beginning to less than 1e5 at the peak of infections.414

5. Final Results.415

5.1. Antiviral Drugs and Vaccines. Based on the analysis in Section 4.5, the416

best time to release a drug or vaccine is far before the peak of the pandemic itself.417

At and after the peak of infections, the outcome quickly worsens. That being said,418

many times a relatively ‘good’ countermeasure saves more lives if released at the peak419

of infections compared to a ‘bad’ countermeasure released long before. This section420

directly compares the effects of a drug and vaccine.421

Figure 12 compares a perfect drug and a perfect vaccine while Figure 13 compares422

a reasonable drug and reasonable vaccine (with added variation in total distribution).423

The perfect drug reduces the death rate to 0%, the recovery time becomes instant, and424

every symptomatically infected patient receives it. The perfect vaccine is 100% effec-425

tive and has 100% vaccination capacity (i.e. N vaccines are available for distribution).426

The reasonable drug and vaccine use the variables and values that were researched427

and discussed in previous sections. About 50% of the U.S. population receives the428

flu vaccine each year [1]. Therefore we have chosen 50%, 70%, and 90% as capacity429

values. In both figures, a or the speed of distribution of the two countermeasures is430

equal.431

In Figure 12, the perfect drug has fewer total deaths compared to the perfect432

vaccine over the entire span of potential release dates. This makes sense intuitively.433

A vaccine can not save people who are already infected. If the vaccine were released434

during the peak of the pandemic, fewer people would benefit. However, the drug can435

help those already in the symptomatically infected category. Additionally, with every436
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Fig. 12. Final Death Toll vs. Perfect Drug/Vaccine Release Date

Fig. 13. Final Death Toll vs. Reasonable Drug/Vaccine Release Date

Fig. 14. Difference in % of Lives Saved (Drug - Vaccines)
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symptomatically infected person receiving it and immediately recovering, the ability437

for the virus to spread is severely diminished.438

In Figure 13, every reasonable vaccine vastly outperforms the reasonable drug439

when released before the peak of infections, while the reasonable drug slightly out-440

performs each vaccine following the peak of infections. This follows similar logic to441

the first graph. The vaccine is much more effective when released early because it442

grants the population herd immunity, but it is not as helpful after many are infected,443

whereas a drug is.444

Figure 14 presents the same information as Figure 13, but directly compares445

the percentage of lives saved by the drug and the vaccine. To construct this graph,446

first we find how effective each countermeasure is in terms of percentage of total447

deaths reduced. Total deaths without any intervention is 956,222. To calculate448

percentage of total deaths reduced for each countermeasure we use the equation449

1 − (deaths/956, 222), where deaths is the total final deaths for that countermea-450

sure if it is released at the given time. Finally, we subtract the percentage of lives451

saved by each vaccine from that of the drug to give us the y-axis. Interpreting this452

graph, a y-axis value of 0 means that the countermeasures are equally as effective,453

whereas a positive value of 0.1 means that the drug saved 10% more lives than the454

vaccine.455

Analysis of Figure 14 finds that at time zero (i.e. the drug and vaccine are avail-456

able since the beginning), each vaccine saves ∼39% more lives than the drug. How-457

ever shortly after the peak of infections, each curve reaches a maximum at 0.0457%,458

0.0421%, and 0.0398% for the 50%, 70%, and 90% distribution brackets respectively.459

This means that at its best, the drug saves between 4% and 4.6% more lives when460

released at that time. If each countermeasure is released directly at the peak of infec-461

tions, the drug only performs slightly better than the vaccine, saving 2.53%, 1.64%,462

and 1.17%, more lives than the vaccine at the 50%, 70%, and 90% distribution brack-463

ets.464

6. Discussion.465

6.1. Equilibrium Analysis. The introduction of a drug does not change the466

equilibrium point, as both the Basis and the Drug Models are in equilibrium when467

A∗ and I∗ are zero. However, with the introduction of a vaccine, equilibrium is only468

reached when S∗ as well as A∗ and I∗ are zero. In general, all of the equilibrium469

points are asymptotically stable when S or Siv is small enough. For the Basis and470

Vaccine Models, S0 and S(iv)0 must be less than 52% of the population, respectively.471

This indicates herd immunity would have been achieved if, at the outbreak, about472

half of the population was already immune. If the drug had been available since the473

beginning of the outbreak, this value would be slightly lower at 48%. Overall, the three474

models are similar, and the introduction of a drug or vaccine does not significantly475

change the equilibrium and its stability.476

6.2. Limitations. Our model’s first and most significant limitation is its basis477

as an SIR model. While we would expect, and do observe, ‘real-world’ infection totals478

to grow and ultimately saturate, the logistic distribution is never a perfect fit. There479

are many more factors at play in a pandemic that cannot be fully explained by a480

simple system of equations. Unpredictable, exogenous factors include the availability481

of medical supplies, hospital capacity, social distancing, and municipal lock-downs,482

among others. SIR models also treat every person the same, neglecting risk factors483

(e.g. age, obesity), geography (urban vs. rural), and gender, among other personal484
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characteristics.485

Further, our recovered population cannot be re-infected. Research shows that if486

individuals recover from SARS-CoV-2, they are at risk for re-infection after about487

160 days [10], though the risk is lower. As more data becomes available, it may be488

necessary to return members of the recovered population to the susceptible population489

after a certain amount of time. In doing this, it would be necessary to have separate490

populations of ‘recovered via the vaccine’ and ‘recovered after infection’ because the491

re-infection rate would be lower for vaccinated populations.492

Another limitation arises in fixing the total population (N). Our model ignores493

natural deaths due to causes other than COVID-19 and new people’s entrance, such494

as births or immigration. In the long run, people who gained immunity would be495

replaced by newborns, who are susceptible to the virus. However, since this paper496

mostly analyzed the effect of drugs and vaccines, we assumed that the period would497

be short enough to ignore these long-term factors.498

Other limitations arise from our heuristics. In our Basis Model this includes499

using a constant R0, using uniform disease duration to calculate β, and assuming500

asymptomatic people are equally contagious to those who are symptomatic (βi =501

βa). With the inclusion of the vaccine, we assume that (if effective) a single dose502

immediately places an individual in the recovered population.503

For all of these reasons, the final number of the total deaths should not be ex-504

trapolated. However, general trends and relationships between drugs and vaccine505

distribution are captured by our model.506

6.3. Possible Next Steps. First potential next steps would include fixing and507

adding elements from the limitations section. It may be possible to forecast and use508

historical Rt data to make βa and βi time dependent variables. This would require509

more data about differences in infectivity between asymptomatic and symptomati-510

cally infected populations as well as some idea about future social distancing and its511

impacts on Rt. Further, subdividing the symptomatically infected and asymptomatic512

populations into at risk groups would also bring the model closer to reality. These513

risk groups could include the elderly, the immunocompromised, and the obese, among514

others [5].515

Another possible next step would have to do with increasing case counts in the516

U.S. and a potential second wave. The projected release dates for many vaccines and517

Operation Warp Speed come around January 2021. This could coincide with a second518

wave after people return to school and work in the fall. While the details would be519

much more complex, a second wave is on many Americans’ minds right now and is as520

important as ever.521

It would also be interesting to test how varying the speed of each countermeasure’s522

distribution affects our analysis. In section 5, we assume the speed of distribution for523

the two is equal. However it could be the case that a vaccination’s distribution could524

take longer than that of a simple pill.525

Finally, as new vaccines and drugs are developed, more data about their specific526

effectivenesses will be available. It would be interesting to plug those values directly527

into the model to compare each vaccine and drug along with each of their projected528

release dates to observe different outcomes.529

6.4. Conclusion and Perspectives. From analysis of our model, the best time530

to release a drug or vaccine is long before a pandemic begins. Each day that a531

countermeasure’s release is delayed many more lives are lost. For the early distribution532

dates of a drug, changes in effectiveness result in proportional changes in the final533
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death toll. However for early release dates of a vaccine, this is not the case. The rate534

of return on the number of vaccines distributed increases, consistent with what we535

know about herd immunity.536

In comparing the release of a drug and vaccine directly, we find that long before537

the peak of infections, vaccines are more effective. At and after the peak of infections,538

the release of a drug will save marginally more lives. If a vaccine or drug were available539

for the entire duration of the disease, about 40% more lives would be saved with a540

vaccine. However, after the peak of infections, a drug can save, at most, ∼4%−4.6%541

more lives depending on how many vaccines are distributed.542

Our results are not to suggest the prioritization of one countermeasure over an-543

other in the U.S’s response to the COVID-19 pandemic. However, they do suggest544

how critical it is to slow down the virus and buy time for the development of coun-545

termeasures.546
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Appendices619

620

Appendix A. Basis Model: System of Differential Equations.621

(A.1)
dS

dt
= −βiI

(
S

N

)
− βaA

(
S

N

)
622

(A.2)
dA

dt
= βiI

(
S

N

)
+ βaA

(
S

N

)
− µAni − (1− µ)Anr623

(A.3)
dI

dt
= µAni − αρI − (1− α)γI624

(A.4)
dR

dt
= (1− µ)Anr + (1− α)γI625

(A.5)
dD

dt
= αρI626
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Appendix B. Antiviral Drug Model: System of Differential Equations.627

628

(B.1)
dS

dt
= −βiI

(
S

N

)
− βaA

(
S

N

)
629

(B.2)
dA

dt
= βiI

(
S

N

)
+ βaA

(
S

N

)
− µAni − (1− µ)Anr630

(B.3)
dI

dt
= µAni − (1− j)αρI − (1− j)(1− α)γI − jαjρI − j(1− αj)γjI631

(B.4)
dR

dt
= (1− µ)Anr + (1− j)(1− α)γI + j(1− αj)γjI632

(B.5)
dD

dt
= (1− j)αρI + jαjρI633

Appendix C. Vaccine Model: System of Differential Equations.634

(C.1) H =

{
1 if v < S −

[
βiI
(
S
N

)
+ βaA

(
S
N

)]
0 otherwise

635

(C.2)
dS

dt
= −

[
βiI

(
S

N

)
+ βaA

(
S

N

)]
H − (v − S)H − S636

(C.3)
dSiv
dt

= [(1− κ)v − (1− κ)S]H + (1− κ)S −
[
βiI

(
Siv
N

)
+ βaA

(
Siv
N

)]
637

(C.4)
dA

dt
=

[
βiI

(
S

N

)
+ βaA

(
S

N

)]
H+

[
βiI

(
Siv
N

)
+ βaA

(
Siv
N

)]
−µAni− (1−µ)Anr638

(C.5)
dI

dt
= µAni − αρI − (1− α)γI639

(C.6)
dR

dt
= (1− µ)Anr + (1− α)γI + [κv − κS]H + κS640

(C.7)
dD

dt
= αρI641
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Appendix D. Parameter Summary.642

Table 1
Parameter Summary

βi = 0.1205 Expected number of people a symptomatically
infected person infects per day.

βa = 0.1205 Expected number of people an asymptomatic person
infects per day.

ni = 0.1961 Rate at which people transition from asymptomatic to
symptomatically infected.

nr = 0.1111 Rate at which people transition from asymptomatic to recovered.
µ = 0.85 Proportion of asymptomatic individuals who become

symptomatically infected.
α = 0.0064 Proportion of infected individuals who die.
γ = 0.0870 Rate at which infected people recover.
ρ = 0.0562 Rate at which infected people die.
αj = 0.0032 Proportion of individuals who receive the drug and die.
γj = 0.102 Rate at which people recover with the drug.
κ = 0.91 Proportion of effective vaccinations

Appendix E. Jacobian Matrix.643

(E.1) J =



∂S′(t)
∂S

∂A′(t)
∂S

∂I′(t)
∂S

∂R′(t)
∂S

∂D′(t)
∂S

∂S′(t)
∂A

∂A′(t)
∂A

∂I′(t)
∂A

∂R′(t)
∂A

∂D′(t)
∂A

∂S′(t)
∂I

∂A′(t)
∂I

∂I′(t)
∂I

∂R′(t)
∂I

∂D′(t)
∂I

∂S′(t)
∂R

∂A′(t)
∂R

∂I′(t)
∂R

∂R′(t)
∂R

∂D′(t)
∂R

∂S′(t)
∂D

∂A′(t)
∂D

∂I′(t)
∂D

∂R′(t)
∂D

∂D′(t)
∂D


644

(E.2)

(J − λI) =


−λ −βaS

N −βiS
N 0 0

0 βaS
N − µni − (1− µ)nr − λ βiS

N 0 0
0 µni −αρ− (1− α)γ − λ 0 0
0 (1− µ)nr (1− α)γ −λ 0
0 0 αρ 0 −λ

645
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